
The Eureka Tool for Software Model Checking∗

Alessandro Armando
AI-Lab, DIST

Università di Genova, Italy

Massimo Benerecetti
Dip. di Scienze Fisiche
Università “Federico II”

Napoli, Italy

Dario Carotenuto
Dip. di Scienze Fisiche
Università “Federico II”

Napoli, Italy

Jacopo Mantovani
AI-Lab, DIST

Università di Genova, Italy

Pasquale Spica
Dip. di Scienze Fisiche
Università “Federico II”

Napoli, Italy

ABSTRACT
We describe EUREKA, a symbolic model checker for Linear
Programs with arrays, i.e. programs where variables and ar-
ray elements range over a numeric domain and expressions
involve linear combinations of variables and array elements.
This language fragment easily encodes a large class of pro-
grams for which, as demonstrated by our experiments, tech-
niques based on predicate abstraction do not apply success-
fully.

1. INTRODUCTION
EUREKA is a software model checker for Linear Programs
with arrays [1], a fragment of the C programming language
where variables and array elements range over a numeric
domain and expressions involve linear combinations of vari-
ables and array elements. EUREKA is targeted towards the
verification of reachability properties which can be specified
by adding assertions to the program. A number of features
are supported, among which arbitrarily nested loops and
non-determinism.

EUREKA interprets the counterexample guided abstraction
refinement (CEGAR for short) paradigm in a novel way by
using array indexes instead of predicates. In the most com-
mon approaches (e.g. SLAM [3], BLAST [4], SATABS [5]) a
program is abstracted w.r.t. a set of predicates, the abstrac-
tion is a Boolean Program, and refinement searches for new
predicates in order to build a new, more refined abstraction.
Unlike these approaches, EUREKA abstracts the program
w.r.t. a family of sets of array indexes, the abstraction is a
Linear Program (without arrays), and refinement searches
for new array indexes.

∗The work described in this paper has been partially sup-
ported by the Italian Ministry of University and Research
within the the PRIN project no. 2003097383 002, “Synthe-
sis of deduction-based decision procedures with applications
to the automatic formal analysis of software”.

The ability to analyse Linear Programs with arrays is par-
ticularly important as arithmetic and arrays are ubiquitous
in programming and many real-world programs belong to
this class. Moreover, most predicate abstraction techniques
(e.g. SLAM and BLAST) suffer from a severe lack of pre-
cision when dealing with arrays. The experimental analysis
of Section 3 demonstrates the effectiveness and scalability of
the EUREKA approach when compared with other state-of-
the-art tools based on predicate abstraction.

2. LINEAR ABSTRACTION REFINEMENT
Let P be a Linear Program with arrays, and let R be an
array-indexed family of sets of array indexes. The CEGAR
procedure implemented in EUREKA amounts to iterating
the following steps.

Abstraction. Let a be an array and [k1, . . . , kn] be a per-
mutation of the elements in R(a) ∈ R. If l is a linear ex-

pression, then an abstraction of l w.r.t. R, say bl, is obtained
from l by replacing every expression of the form a[e] with
abs(a[e], [k1, . . . , kn]), where

abs(a[e], []) = u

abs(a[e], [k1, k2, . . . , kn]) = (be == k1 ? ak1 : abs(a[e], [k2, . . . , kn])),

each aki is a numeric variable denoting the value of the ki-th
element of a (for i = 1, . . . , n), and u is a constant denoting

an undefined value. An abstraction bP w.r.t. R is obtained
from P by replacing all the expressions l occurring in P

with bl, and then by replacing every assignment of the form
a[e1] = e2; with the (parallel) assignment

ak1 , . . . , akn = (be1 == k1 ? be2 : ak1), . . . , (be1 == kn ? be2 : akn);.

If R(a) = ∅, then the parallel assignment reduces to a skip
(;) statement.

Model Checking. The resulting Linear Program (without

arrays) bP is then model-checked by using the interprocedural

data-flow analysis described in [1]. If bP is found to be safe,
the computation stops reporting that P is safe. Otherwise,
an abstract error trace τ is computed.

Simulation. The error trace τ of bP found in the previous
step is symbolically executed in P to check its feasibility.
This is done by building a set of quantifier-free formulæ Φ(τ)
whose satisfiability (w.r.t. the union of the theory of arrays
and Linear Arithmetic) guarantees the executability of τ in
P . If Φ(τ) is found to be satisfiable, then τ is reported to be



an error trace of P and the procedure halts, otherwise the
proof of unsatisfiability Π of Φ(τ) is fed to the next phase.

Refinement. The proof of unsatisfiability Π is inspected
and R extended in such a way to rule out τ from the ex-
ecution traces of the refined program.

3. COMPARATIVE EXPERIMENTS
We have tested EUREKA against a number of problems
that involve reasoning on both arithmetic and arrays and
thus allow to thoroughly assess the effectiveness and scala-
bility properties of our tool. On the same problems we have
tested two well-known symbolic model checkers that employ
predicate abstraction, namely BLAST and SATABS. The
experiments have been carried out on a 2.4GHz Pentium IV
running Linux with memory limit set to 800MB and time
limit set to 30 minutes. An excerpt of the results of our
experiments is given in Tables 1, 2, and 3

The first two benchmark problems involve string manipula-
tion, the gray code problem consists in an implementation
of the (n, k)-Gray code algorithm [11]. As revealed by the
results of our experiments, sorting algorithms like the bub-
ble sort, selection sort, and insertion sort constitute
a hard testbench for the tools due to the tight coupling of
data and control. The fibonacci problem iteratively com-
putes and sums the first N Fibonacci numbers. This prob-
lem is a slight variation of the one comprised in the SNU
Real-Time benchmark suite [12]. Also, we tested the tools
against an implementation of the bresenham problem, a
well-known algorithm initially developed with the purpose
of drawing lines with digital plotters [13] and later used for
computer displays. swap is a program that iteratively calls a
procedure that swaps the values of two variables. The latter
benchmark can be found in the BLAST source code dis-
tribution. fibonacci, bresenham, and swap are the only
benchmark problems that do not involve reasoning on ar-
rays.

All problems are parametric in a positive integer N . The size
of the arrays occurring in the programs and/or the number
of iterations carried out by the loops increase as N increases.
Thus the higher is the value of N , the bigger is the search
space to be analysed. Each entry of the tables shows the
greatest instance the tools are able to analyse and the time
in seconds. Also, we give the time taken by the refinement
phase of SATABS, the number of array elements found by
EUREKA during the refinement phase, and the sum of the
sizes of the arrays involved in the programs. Numbers with ∗

indicate that the tool can analyse greater instances than the
one shown. All benchmark families but string compare
are safe.

As shown by Table 1, on most problems BLAST reports an
incorrect answer, that is, it concludes that the program is
unsafe when it is safe instead. The reason of this lies in that
different array elements are indistinguishable for BLAST.
By default, SATABS allows 50 iterations of the abstract-
check-refine loop. We increased this number to 100 with
option -iterations. The inconclusive outcome in Table 2
means that SATABS is not able to output a result after
100 iterations. The results of the experiments demonstrate
the great effort required by the refinement phase despite
the efficiency of current SAT solvers. The experiments with
EUREKA (see Table 3) confirm the effectiveness of the Lin-

Table 1: BLAST experimental results.
Benchmark BLAST

N Total Time

string copy Incorrect
string compare 100∗ 435.26
gray code Incorrect
partition Incorrect
bubble sort Incorrect
insertion sort Incorrect
selection sort Incorrect
fibonacci 24 (5.68)
bresenham Error
swap 300∗ 782.25

Table 2: SATABS experimental results.
Benchmark SATABS

N Refinement Time Total Time

string copy 10 105.98 144.69
string compare 12 292.19 348.19
gray code Inconclusive
partition Inconclusive
bubble sort 2 24.39 30.42
insertion sort 2 51.43 74.74
selection sort 2 75.53 115.86
fibonacci 1000∗ 1.65 2.88
bresenham 1000∗ 71.15 83.16
swap 64 8.25 109.44

ear Abstraction and reveal the difficulties of the approaches
based on predicate abstraction when dealing with programs
featuring a tight interplay between arithmetic and array ma-
nipulation. Particularly, EUREKA performs best when few
array elements are needed to prove the property given.

Table 3: EUREKA experimental results.
Benchmark EUREKA

N Total Time
re↓ned/total

array elements

string copy 1000∗ 134.63 1/2N
string compare 1000∗ 18.11 1/2N
gray code 60 101.31 16/28
partition 40 111.16 1/N
bubble sort 9 92.29 N/N
insertion sort 16 64.55 N/N
selection sort 9 58.41 N/N
fibonacci 1000∗ 7.45 0/0
bresenham 1000∗ 11.25 0/0
swap 1000∗ 2.45 0/0

4. REFERENCES
[1] A. Armando, M. Benerecetti, and J. Mantovani,

“Model checking linear programs with arrays,” in
SoftMC’05, ser. ENTCS, vol. 144. Elsevier, 2005.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith, “Counterexample-guided abstraction
refinement,” in CAV, 2000.

[3] T. Ball and S. K. Rajamani, “Automatically validating
temporal safety properties of interfaces,” in SPIN.
Springer, 2001.

[4] T. A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre, “Lazy abstraction,” in POPL. ACM Press,
2002.

[5] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav,
“SATABS: SAT-based predicate abstraction for
ANSI-C,” in TACAS, ser. LNCS, vol. 3440. Springer,
2005.

[6] T. Reps, S. Horwitz, and M. Sagiv, “Precise



interprocedural dataflow analysis via graph
reachability,” in POPL. ACM Press, 1995.

[7] A. Armando, M. Benerecetti, and J. Mantovani,
“Abstraction refinement of linear programs with
arrays,” in TACAS, ser. LNCS, vol. 4424. Springer,
2007.

[8] R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill,
“Possibly not closed convex polyhedra and the parma
polyhedra library,” in SAS, ser. LNCS, vol. 2477.
Springer, 2002.

[9] C. Barrett and S. Berezin, “CVC Lite: A new
implementation of the cooperating validity checker,” in
CAV, ser. LNCS. Springer, 2004.

[10] P. J. Plauger, “The standard template library,”
C/C++ Users Journal, vol. 13, no. 12, 1995.

[11] P. E. Black, “Gray code, in dictionary of algorithms
and data structures,” 2005, see
http://www.nist.gov/dads/HTML/graycode.html.

[12] Seoul National University, Real Time Research Group,
“SNU Real Time Benchmarks,” available at
http://archi.snu.ac.kr/realtime/benchmark.

[13] J. Bresenham, “Algorithm for computer control of a
digital plotter,” IBM Systems Journal, vol. 4, no. 1,
pp. 25–30, 1965.

[14] A. Armando, C. Castellini, and J. Mantovani,
“Software model checking using linear constraints,” in
ICFEM’04, ser. LNCS, vol. 3308. Springer, 2004.

[15] Minimum Operational Performance Standards for
Traffic Alert and Collision Avoidance System II
(TCAS II) Airborne Equipment, Radio Technical
Commission for Aeronautics (RTCA), Inc., 1997,
document no. DO-185A.

[16] Aristotle Research Group, Georgia Institute of
Technology, “TCAS,” available at
http://www.cc.gatech.edu/aristotle/Tools/subjects.

[17] A. Coen-Porisini, G. Denaro, C. Ghezzi, and
M. Pezzè, “Using symbolic execution for verifying
safety-critical systems,” in ESEC / SIGSOFT FSE,
2001, pp. 142–151.

[18] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a
theorem prover for program checking.” J. ACM,
vol. 52, no. 3, pp. 365–473, 2005.

[19] K. L. McMillan, “An interpolating theorem prover,” in
TACAS, ser. LNCS, vol. 2988. Springer, 2004, pp.
16–30.

[20] G. J. Holzmann, “Software model checking with spin.”
Advances in Computers, vol. 65, pp. 78–109, 2005.

[21] K. McMillan, “Symbolic model checking: an approach
to the state explosion problem,” Ph.D. dissertation,
Carnegie Mellon University, 1992, also available as
CMU Technical Report CMU-CS-92-131.

APPENDIX
A. DEMONSTRATION DESCRIPTION
A.1 Abstraction and refinement
The EUREKA tool demonstration will first focus on the
theoretical part of the work. The speaker will introduce
the audience to the CounterExample-Guided Abstraction
Refinement (CEGAR) approach, and will demonstrate the
main advantages of the approach described in Section 2 with

respect to the well-known CEGAR based on Boolean pro-
grams.

A.2 The input format
The demonstration will then draw the attention of the au-
dience to the syntactic aspects of the input programs that
will then be model-checked. The speaker will substantiate
Linear Programs with arrays with a number of examples
(see e.g. Figure 1) taken from the experiments shown in Ta-
bles 1, 2, and 3. Particularly, the speaker will focus on how
to specify non-deterministic assignments and choices, and
on the statements allowed by the syntax1.

A.3 Using Eureka
The EUREKA tool is available as a binary executable for
Linux systems. Thus it can be easily invoked from the shell
prompt. The speaker will first explain the synopsis,

eureka [options] <file>,

Figure 2: Tool options: timings

and will then go through the possible options (see e.g. Fig-
ures 2 and 3) that allow the user to:

• choose the refinement strategy: the abstractor can
expand all array indexes at once (option -x). This op-
tion is useful when the properties to verify involve all
elements of an array. In doing so several abstraction
and refinement steps are skipped, thus leading to a con-
siderable leap in performance.

• disable abstraction and refinement: abstraction
and refinement can be disabled when the input program
is purely linear, that is, it does not contain accesses nor
assignments to array elements (option -l).

• enable debug mode: option -p shows the abstract
linear constraints computed by the Model Checking
module for each node of the abstract control-flow graph.
Option -t prints the control-flow graph and the tran-
sition relations associated to each of its nodes.

• obtain timing information: the user can be informed
about the time taken by each module (abstraction, Mo-
del Checking, refinement) to accomplish its task (option
-t).

The speaker will then explain the output of EUREKA when
it is fed with a Linear Program with Arrays. Particularly,
the speaker will focus on the output of the interprocedu-
ral analysis (either the program is safe or an abstract error
trace is shown) and on the output of the refinement phase
(either the abstract error trace is feasible or a number of
array indexes need to be added to the initial abstraction).
An example output is given in Figure 4.

1We recall that Linear Programs with arrays are in a frag-
ment of the C programming language.



Figure 1: Example Linear Programs with arrays.

Figure 3: Tool invocation and synopsis

Finally, the user will remark the usefulness of our CEGAR
approach and our implementation by comparing the results
of EUREKA with the results obtained by tools such as SA-
TABS and BLAST, as reported in Section 3.

B. TOOL AVAILABILITY
The EUREKA tool is implemented in C++ in order to
take advantage of several libraries that efficiently handle
arithmetic constraints and formulæ modulo theories. The
(statically-linked) binary executable is currently available
for Linux systems, and has been tested with the most recent
Mandriva, Debian, and Ubuntu platforms.

The tool is currently available for beta-testing at www.ai-lab.
it/eureka/ase07, together with a number of examples and
programs used during the evaluation phase whose results are
reported in Tables 1, 2, and 3.



Figure 4: The output of EUREKA on an instance of bubblesort.


